Grazing-sliding bifurcations, border collision maps and the curse of dimensionality for piecewise smooth bifurcation theory
نویسندگان
چکیده
Abstract. We show that maps describing border collision bifurcations (continuous but non-differentiable discrete time maps) are subject to a curse of dimensionality: it is impossible to reduce the study of the general case to low dimensions, since in every dimension the bifurcation can produce fundamentally different attractors (contrary to the case of local bifurcations in smooth systems). In particular we show that ndimensional border collision bifurcations can have invariant sets of dimension k for integer k from 0 to n. We also show that the border collision normal form is related to grazing-sliding bifurcations of switching dynamical systems. This implies that the dynamics of these two apparently distinct bifurcations (one for discrete time dynamics, the other for continuous time dynamics) are closely related and hence that a similar curse of dimensionality holds in grazing-sliding bifurcations.
منابع مشابه
Grazing-sliding bifurcations, the border collision normal form, and the curse of dimensionality for nonsmooth bifurcation theory
In this paper we show that the border collision normal form of continuous but non-differentiable discrete time maps is affected by a curse of dimensionality: it is impossible to reduce the study of the general case to low dimensions, since in every dimension the bifurcation produces fundamentally different attractors (contrary to the case of smooth systems). In particular we show that the n-dim...
متن کاملArnol'd Tongues Arising from a Grazing-Sliding Bifurcation
The Nĕımark-Sacker bifurcation, or Hopf bifurcation for maps, is a well-known bifurcation for smooth dynamical systems. At a Nĕımark-Sacker bifurcation a periodic orbit loses stability and, except for certain so-called strong resonances, an invariant torus is born; the dynamics on the torus can be either quasi-periodic or phase locked, which is organized by Arnol′d tongues in parameter space. I...
متن کاملRobust chaos and border-collision bifurcations in non-invertible piecewise-linear maps
This paper investigates border-collision bifurcations in piecewise-linear planar maps that are non-invertible in one region. Maps of this type arise as normal forms for grazing–sliding bifurcations in three-dimensional Filippovtype systems. A possible strategy is presented for classifying fixed and period-2 points, that are involved in such bifurcations. This allows one to determine a region of...
متن کاملBifurcation phenomena in two-dimensional piecewise smooth discontinuous maps.
In recent years the theory of border collision bifurcations has been developed for piecewise smooth maps that are continuous across the border and has been successfully applied to explain nonsmooth bifurcation phenomena in physical systems. However, there exist a large number of switching dynamical systems that have been found to yield two-dimensional piecewise smooth maps that are discontinuou...
متن کاملBorder Collision Bifurcations in n-Dimensional Piecewise Linear Discontinuous Maps
Abstract. In this paper we report some important results that help in analizing the border collision bifurcations that occur in n-dimensional discontinuous maps. For this purpose, we use the piecewise linear approximation in the neighborhood of the plane of discontinuity. Earlier, Feigin had made a similar analysis for general n-dimensional piecewise smooth continuous maps. Proceeding along sim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014